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J.  Phys. A: Math. Gen. 23 (1990) 2775-2786. Printed in the U K  

Selection rules for vibronic coupling in quasi-one-dimensional 
solids: 11. Helical chains 
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f Varian Research Center, Palo Alto, CA 94303, USA 
i Department of Mathematics and Computer Science, San Jose State University, San Jose, 
CA 95192-0103. USA 

Received 1 August 1989, in final form 27 February 1990 

Abstract. To identify the Peierls-active modes in conducting polymers and quasi-one- 
dimensional metals, selection rules for linear vibronic-coupling matrix elements are derived. 
The symmetrised Kronecker squares of irreducible corepresentations are decomposed into 
their irreducible constituents, for all the line groups containing a screw axis. 

1. Introduction 

Study of topological effects of reduced dimensionality has been one of the focal topics 
in solid state physics in the last decade (Miller 1982, Monceau 1985, Kamimura 1985, 
Kuzmany er af 1985, Skotheim 1986). Vibronic instabilities in quasi-one-dimensional 
( Q I D )  systems are a paramount example of such an effect. As a part of our systematic 
study of interplay of topology and symmetry in such systems, in the earlier paper 
(BoioviC and BoioviC 1989, hereafter referred to as I )  we have determined the selection 
rules for vibronic coupling for all Q i D  solids that can be viewed as eclipsed molecular 
stacks. In more technical terms (Cracknell 19751, that amounts to decomposing into 
irreducible components the symmetrised Kronecker square of each corepresentation 
of each symmorphic line groups; these are Ln(n  = 1 , 2 , .  . .); Lnm, L n l m ,  Lii, Ln2, 
LAm and L ( 5 ) 2 m  ( n  = 1 , 3 , .  . .) and Lnmm, L(%), Ln22, L ( z ) 2 m  and Ln /mmm 
( n  = 2 , 4 , .  . .). Here we proceed by dealing with all the line groups that contain a screw 
axis, i.e. the groups Ln, ( n  = 1 , 2 , .  . . ; p = 1 , .  . . , n - l ) ,  isogonal to the point group 
C,; Ln,2 ( n = 1 , 3  , . . . ;  p = l ,  . . . ,  n - 1 )  and Ln,22 ( n = 2 , 4  , . . . ;  p = l ,  . . . ,  n - 1 )  
isogonal to D,, L(2q),mc ( q =  1 , 2 , .  . .) isogonal to C ,,,, L(2q)Jm ( q =  1 , 2 , .  . .) 
isogonal to Cnh and L(2q),/mcm ( q  = 1 , 2 , .  . .) isogonal to Dnh .  This class of solids 
is broad and it includes many materials that have attracted substantial attention recently, 
e.g. platinum tetracyanates such as K 2 R (  CN), and transition metal tetrachalcogenides 
such as TaTe,, both of which have L84/mcm line group symmetry; beryllium hydride 
(BeH,) li which has L4>/ mcm; tetrathiatetracene and tetraselenatracene stacks which 
have L2, lmcm;  polysulphurnitride (SN), which has L2,mc, and indeed a host of 
natural and synthetic stereoregular polymers, which in most cases assume one or more 
helical conformations. Indeed, of particular interest here are those among them which 
are metallic, or which can be doped to become metallic; in that case vibronic instabilities 
are indeed expected to occur (Peierls 1955). The tables presented in section 2 enable 
one to determine all the vibronically active modes of such a system, i.e. all the normal 
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modes Q for which the linear electron-phonon coupling matrix element 
( e / Q .  ( C ? V / C ? Q ) ~ ~  e ’ )  (where 1 e ) ,  le’) are the degenerate one-electron states at the Fermi 
level and V is the effective one-electron potential) does not vanish identically. In 
section 3 we give a couple of examples illustrating this procedure in detail. For the 
reader’s convenience, we also briefly review the line group notation below, and give 
the character tables of all inequivalent irreducible corepresentations of the line groups 
under study in the appendix. 

A( B): one-dimensional irreducible representation, irrep, of a line group L, even 
(odd) with respect to the vertical mirror plane; 

E: a two-dimensional irrep of L; 
G :  a four-dimensional irrep of L; 
(D, D*): a pair of complex-conjugate irreps, a corepresentation of L; 
h k :  quasi-momentum; we choose h = 1 and the translation period a = 1 so that 

O < k < n ;  
h m :  quasi-angular momentum; m = 1 , 2 , .  . . , ( n  - 2 ) / 2  for n even and m = 

1 , 2 , .  . . , ( n  - 1 ) / 2  for n odd, where n is the order of the screw axis. 
In the tables we also utilise the following abbreviations: 

r = 2 k  t = 2 ~ - 2 k  w = 2 m  v = 2 m - n .  

2. Tables of irreducible components of the symmetrised Kronecker squares of 
corepresentations of all the line groups that contain a screw axis 

Table 1. Symmetrised Kronecker squares (SKS) of corepresentations of the line groups 
Ln, ( n  = 1,2,. . . ; p = 1 ,2 ,  . . . , n - 1 J. 

D [ D2] - (OAO) 

(OAm, OA- m )  

(kAO, -kAOJ k<77/2 
k = 77/2 
k>77/2 

( k A m ,  - k A - m )  k<77/2 

k = 7712 

k >  ~ f 2  

( k A - m ,  - k A m )  k C r r / 2  

k = 77/2 

k >  7712 

m < n / 4  
m = n / 4 t  
m > n / 4  

m < n / 4  
m = 11/41  
m > n / 4  
m < n / 4  
m = n / 4 +  
m > n / 4  
m < n / 4  
m = n / 4 ?  
m > n / 4  
m < n / 4  
m = 11/41  
m > n / 4  
m < n / 4  
m = n / 4 t  
m > n / 4  
m < n / 4  
m = n / 4 +  
m > n / 4  
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Table 1. (cont inued)  

D [ D2] - (OAO) 

(kA9,  -kAq)ll  k < TI?. (rAO, -rAO) 
k = T / ?  
h >  x f 2  (tAO, -tAO) 

( TAO, TA - p  1 

( n A m ,  n-Ar?i) m > n / 4  (OAW, OA - w 1 
m = n / 4 t  2(OAq) 
m > n / 4  (OAl;, OA- C )  

t Only for n = 2q = 4, 8, , , . , 
$ 2 ( a A w ) , f o r  w = - p / 2 o r  w = ( n - p ) / 2 ;  $ = w - q  
8 2 ( n A t . ) , f o r  v = - p / 2 o r  c = i n - p ) / 2 ;  u = c - q .  
11 Only for n = 29 = 2 , 4 , ,  , , , 

Table 2. S K S  of corepresentations of the line groups Ln,2 ( n  = 1,3, . . )  and  Ln,22 
( n = 2,4,  . . . I .  

D [ D2] - (OAO) 

k = 7712 

m < n / 4  
m = n/4t  
m > n / 4  

m n / 4  
m >  n / 4  
m < n / 4  
m > n / 4  
m < n / 4  
m > n I 4  

m < n / 4  
m = n / 4 t  
m > n / 4  

t Only for n = 2q  = 4.8, . , , , 
$ ( x A w + ) + ( ~ A w - )  if w = - p / 2  or w = ( n - p ) / 2  
§ ( T A u + ) + ( ~ A c - )  if l ; = - p / 2  or o = ( n - p ) / 2 .  
/ /  Only for n = 29 = 2 , 4 , .  . . 
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Table 3. SKS of corepresentations of the line groups L(Zq),,mc ( 9  = 1 , 2 , .  . . i ,  

D 

(OEm 1 

(kAO, -kAO) 

( k B O ,  -kBO) 

( kEm,  - k E m )  

k = n/2 

k > n / 2  

[ D'] - (OAO) 

m < q /2  

m > 9 /2  
m = q/2+ 

(OEn 1 
(OAq)+(OBql 
(OEt') 
(rAO, -rAO) 
(TAO, "A91 
( IAq,  - tAql 
(rAO, -rAO) 
i v.40, n A q )  

( r E w ,  - r E w  1 +(FAO,  -rAO) + ( O E M  ) + ( O B O i  
( rAq,  - rAql+(rBq,  -rBq)+(rAO, -rAO) 
+(OAq) + (OBql+ ( O B O )  
( r E t ,  - r E t ' )  + (rAO, -FAO) + (OEc) + (OBO) 
( n E w ,  nEKI*+(nAO,  x A q ) +  (OEn I +(OB01 
2(  nAO, n A q ) +  ( n B O ,  r B q )  +(OAq) + (OBq) + ( O B O i  
(nEt', n E 6 ) P  + (xAO,  n A q )  + ( O E t ' )  + (080)  
(tEw-, - rEw)+( tAq,  - tAq)+(OEw)t (OBO) 
(rA9, - tAq)  + (tAO, -tAO) + ( t B O ,  -!BO)+ (OAq) + (OBO)  
( t E t ,  - t E t ' ) +  ( tAq ,  - !Aq l+(OEt )  + ( O B O )  
(rAO, -rAO) 
(nAO, n A q )  
i rA9, - t A q )  
(rAO, -rAO) 
i nAO, n A 9 )  
( tAq ,  - tAq)  
2(OAq) 
~ ( 0 ~ 9 )  
Z ( O E l r ' )  + ( O E G )  + Z(0Aq) + (OBO)  
(OAq) + (OBO)  

(tAO, - t A q )  
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Table 4. S K S  of corepresentations of the line groups LiZq), , /m ( 9  = 1, 2 , .  . , I  

D [ D'] - (OAO+ i 

( O A m i , O A - m i )  

(kEO) k < n / 2  
k = n I 2  
k >  n / 2  

( k E m , k E - m j  k < n i 2  

k = r r /2  

k >  n / 2  

(OAW+, OA - W +  1 
2(OAq+) 

(rEO) 
I HEO! 
itEO) 
( r E w ,  r E - w ) + ( r E O ) + ( O A w ' + , O A -  nl+I+iOAO-) 
2( r E q ) + ( r E O )  t 2(OAq+ j +(OAO-i 
( r E c ,  r E  - L ' j  + ( rEO)+(OAc+,  OA- u t i  i-(OAO-) 
( nEw,  n E G ) $  + ( nEO) + (OAw+, OA - W i - )  + (OAO-) 
~ ( T E O ) + Z ( O A ~ + ) + ( O A O - )  
( n E v ,  n E  t ; ) P  + ( n EO) + iOAc+, OA - L'+ i + (OAO-) 
( tEw,  { E -  W ) + (  (EO)+(OAw+, OA- it'+i+(OAO- j 

Z ( t E q ) +  ( f E O j + Z ( O A q + ) +  (OAO-i 
j ~ E u ,  t E  - a ) +  ( f E O ) +  fOAc+, OA- U + ) +  (OAO-J 

(OAo+, OA- v + )  

i rEO) 
i n E O )  

(OAq+ T IOAq-) 
( (EO) 

2 1 0 A ~ + .  OA - "+) + (OAW-, OA - w,- )  + (OAq+) 
+(OAq-l+ (OAO-) 
(OAq+) + (OAO- j 
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Table 5. S K S  of corepresentations of the line groups L i l y  j , , /mcm y = 1 , 2 , .  . . I  

D 
- 

(OEm*j 

k = 77-12 

k > n / 2  

[D21 - (OAOt)  

i O E u + )  
iOAq+)+  iOBq+) 
(OEv+) 
i rEAO) 
i xEAO)  
( r E A q )  
(rEAO) 
( nEAO) 
( t E A q )  
( r G w % ) + (  rEAO)+(OEw+J+iOBO-) 
( r E A q ) + ( r E B q J  + ( rEAO)+  ( O A q + ) + ( O B y t )  t (OBO-1 
( r G u ) + (  rEAO) +(OEv+J+(OBO-J 
i nGIL')+(nEAOJ+(OEu~+)+(OBO-) 
2 ( . i rEq /2+)+ i r rEAO)+(OAq+l+  (OBq+) + ( O B 0 4  
( a G r ) +  (nEAOJ  +(OEv+)+(OBO-) 
( ~ G w ' )  + ( t E A q J + ( O E n + ) +  (OBO-) 
i tEAO)+(  tEBO) + ( t E A q ) +  (OAq+)+(OBq+)+(OBO-) 
( tG t . )+  ( t E A q ) +  (OEu+)+  iOBO-) 
i rEAO) 
i vEAOJ 
( t E A q l  
( rEAO) 
( nEAOJ 
( r E A q )  
(OAq+)+(OAq-)  
(OAq+) +iOAq-) 
Z(OEk'+)+ ( O E w - ) +  (OAq+)+ (OBq+)+  (OBO+) 
(OAq+)+ (OBO-) 

t Only for q = 2,4 ,  

3. Examples 

To illustrate how these tables can be utilised, let us consider a staggered stack of 
identical diatomic molecules shown in figure 1. The spatial symmetry of this model 
polymer is described by the line group L4?/mcm. Let us assume that each atom 
contributes one relevant atomic orbital of the 1 = 0 type (i.e. s, p, d,, etc), and let t ,  
and t2 denote the intra- and inter-molecular transfer integrals as indicated in figure 1 .  
Within the tight-binding scheme, the electronic energy bands are given as 

E (kA, , )=2f ,+2 t2  cos ka 

E ( k E , ) = 2 t 2 c o s  ka 

E(  kA2) = - 2 t ,  + 2t, cos ka. 

If we assume that t ,  < 0, t 2  < 0 and I t 2  1 > I t ,  1, to avoid band overlapping, the two outer 
bands A0 and  A2 are non-degenerate; the middle E ,  band is twofold degenerate 
throughout the Brillouin zone. Notice that this band degeneracy is frequent in Q I D  

crystals, thus making line-group-theoretical considerations more generally useful than, 
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I 

Figure I .  

for example, the analogous space group ones; in the latter case, the limiting factor is 
the relative scarcity of the special (high-symmetry) k vectors as compared to the 
overwhelming abundance of the general (low-symmetry) ones. 

Let us consider the two simplest non-trivial cases: when each molecule contributes 
one electron so that the lowest A0 band is half-filled, and when each molecule 
contributes two electrons so that the middle E, band is half-filled. 

Case 1 .  Here, the Fermi level states correspond to 

D = ( T / ~ A O )  + ( - ~ / 2 A 0 )  = (TI~EAO) .  

From table 5,  entry (kEAO), case k = 7712, we find that 

[rr/2EAi] = (7rEAO)+(OAO+). 

(Notice that we have added the identity corepresentation, which indeed appears in 
every [D’], but which was omitted from tables 1-5 for brevity.) 

Now, one has to construct the vibration modes that transform according to the 
corepresentation (rrEAO). That can be done utilising the standard methods for con- 
structing symmetry adapted bases; for application of those techniques to the line groups 
see BoioviC and Delhalle (1984). The resulting displacement modes are shown in 
figures 2 and 3; notice that these modes are pairwise-degenerate. The implication is 
an existence of a vibronic (or charge-density wave) instability with a complex order 
parameter. This is unusual since we were dealing with a single (i.e. non-degenerate) 
half-filled band; in the simple Peierls model with commensurability n = 2, one would 
have had a real order parameter. Notice also that in addition to the longitudinal, 
displacive Peierls mode (figure 2), we have a possible transverse distortive instability 
(figure 3) ,  which differs from both the Peierls case and the examples considered 
in I. 
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Figure 3. 

Case 2. Here, there are four degenerate states at the Fermi level, which belong to 

D = (7 /2EI)  + ( - ~ / 2 E l )  = (7/2GI). 

From table 5 ,  entry ( k G m ) ,  case k = 7r/2 and m = 1, we find that 

[7/2G:] = 2 (  r E I + )  + ( TEAO) + (OA,+) + (OB?+) + (OBO-) + (OAO+) 

where we have added the identical corepresentation, as explained above. The additional 
vibronically active modes are shown in figures 4 and 5 .  Of these, the (vE ,+)  modes 
are twofold-degenerate and displacive; (OA,+) mode is non-degenerate and distortive, 
and (OB,+) is non-degenerate and displacive; all of them are transverse. Notice that, 
despite the fact that k ,  = 7/2 ,  the latter two modes have k = 0 rather than k = 7 ;  that 
is again unusual and it  originates from the presence of the screw axis, i.e. of the mixing 
of rotational and translational symmetries. There are no modes of (OBO-) symmetry. 
The (OB,+) mode is the libration mode; if I t z  I << I t ,  1, as would probably be the case in 
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Figure 5. 

reality, this mode would likely be lowest-frequency one, and  one would expect it to 
dominate the instability. 

4. Conclusions and discussions 

Compared to those of I ,  the selection rules listed here show certain similarities; for 
instance, notice the appearance of Kronecker multiplicity coefficients larger than one. 
In those cases, additional restrictions on the allowed matrix elements can be obtained 
via the Wigner- Eckart theorem. Next, four-dimensional irreducible components of 
[DZ] are seen to appear in tables 3-5. The importance of this fact stems from possible 
occurrence of a four-dimensional order parameter in the Peierls-distorted phase. That 
can generate physics much richer from that of the simple Peierls model (where the 
order parameter is two or  one dimensional); particularly exciting is the possibility of 
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two independent Goldstone modes emerging simultaneously (BoioviC 1985a, b).  The 
fact that four-dimensional corepresentations d o  not appear in tables 1 and 2 is not an  
accident: a screw axis of order larger than two is not compatible with simultaneous 
occurence of mirror or glide planes, which is needed to couple ( k ,  m )  to ( - k ,  -m), 
and thus make electronic energy bands twofold degenerate throughout the Brillouin 
zone. It is also interesting to note that four-dimensional vibronically active phonon 
modes never appear in conjunction with electronic states at the Brillouin zone centre 
or boundaries, even when those states have the necessary twofold (or even fourfold!) 
band degeneracy. This precludes occurrence of the double-Goldstone-mode anomaly 
mentioned above in Q I D  solids with even number of electrons per unit cell (unless 
there is an  accidental band overlap); in general, doping will be required to generate 
partially occupied bands. 

As for the differences, we have emphasised in I the fact that both quasi-momentum 
and quasi-angular momentum were strictly conserved there. This is true here only for 
so-called ‘normai’ scattering processes in which 2 k  < T (the Brillouin zone edge); in 
umklapp processes where 2 k  3 T ,  the quasi-angular momentum also undergoes a jump 
according to the rule ( k ,  m )  + (k+2 . r r ,  m - p ) .  Indeed, the underlying reason is that 
the np screw axis mixes rotational and translational symmetry operations (C,, 10) and  
( E l p l n ) ,  none of which itself belongs to the line group under study; for more details 
see DamnjanoviC et a1 (1983). 

Appendix 

In what follows, we give the character tables of the irreducible corepresentations of 
all the line groups that contain screw axes. The characters are listed only for the 
necessary elements (coset representatives); that is sufficient to identify the corepresenta- 
tions. 

The following notation is utilised throughout tables Al-A5: 

s = 0 ,1 ,  . . . , n - 1 

a = 2 ~ l n  

r = 0,  1, . . . , q - 1 

t = o ,  * l ,  1 2 , .  * 

Table A l .  The characters of irreducible corepresentations of the line groups Ln, 
( n = 1 , 2  , . . . ;  p = O , I ,  . . . ,  n - 1 ) .  

D (c:,l r + sp/ n )  

1 
2 cos( mra)  
( - I ) %  
2 cos( kt  + kspl  n )  
Z c o s [ m s a + k t + k r p / n )  
2 i - 1 ) ’  cos(kt t k s p / t i )  
2(-1) ‘  cos(msa + p s a / 2 )  
(-1)l 

t Only for n = 2q  = 2 , 4 ,  . . . . 

9: Only for p = 2 , 4 ,  , , . . 
I /  Only for n - p  = 2 , 4 , .  . . , 

$ f i  = - m  - p ,  
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Table A2. The characters of irreducible corepresentations of the line groups Ln,2 
( n = 1 , 3  , . . .  ) a n d L n P 2 2 ( n = 2 , 4  , . . .  j .  

* I  
0 

8 1  
0 
0 
0 
0 

*1 
T l  

+ Only for n = 29 = 2 , 4 , .  . , , 
$ Only for p = 2 , 4 , .  , . . 
5 Only for n - p = 2,4 ,  , , , . 

Table A3. The characters of irreducible corepresentations of line groups L(Zq),mc 
( q  = I ,  2 , .  . .). 

1 
1 
2 cos(2mra) 
I 

1 
2 cos( kr ) 
2 cos(kt) 
4 cos(2mra) cos(kr) 
2 ( - l ) '  cos(kr) 
2(- l ) '  cos(kr) 
2(- l ) '  
2 ( - l ) $  

2i-I)" '  
4 ( - l J '  cos(2mra) 

1 
1 
2 cos[m(2r+ l ) a ]  

-1 
-1 

2 cos[k(r + f ) ]  
Z c o s [ k ( r + ~ J ]  
4 cos[ m(2r  + 1 ) a )  cos[ k (  I + + ) I  
2 ( - 1 ) '  cos[k(r + f ) ]  
2(-1Y cos[k(r+f)]  
0 
0 
0 
0 

1 
- 1  
0 
1 

-1 
2 

-2 
0 
2 

-2 
2 

-2 
0 
0 

a -  
I m = q - m .  
f Only for 9 = 2,4, , 

Table A4. The characters of irreducible corepresentations of the line groups L(Zq),/m 
( q  = 1,2,. . , ) .  

(OAO*) 1 1 *l 
(OAm*,OA-mi)  2 cos(2mra) 2 cos[m(2r+ l ) a ]  *2 
(OAq*) ( - 1 ) 7  ( - I ) ?  *1 
(kEO) 2 cos(kr) 2 cos[k( t +f) ]  0 
( k E m , k E - m )  4 cos(2mra ) cos( k t )  4 cos[m(2r + 1 ) a ]  cos[k( t + f ) ]  0 
( k E q )  2 cos( kt  J -2cos[k( r+f ) ]  0 
(nEO) 2 ( - 1 ) '  0 0 
( n E m ,  nE61)t 4( - 1 ) '  cos( 2mra ) 0 0 
(nEq/2) f  2 (  - 1 ) '+ ' 0 0 

t f i = q - m .  
0 Only for q = 2,4 ,  
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Table A5. The characters of irreducible corepresentations of the line groups L(29),,/ mcm 
(q  = 1 , 2 , .  . .). 

1 
1 
2 cos(2mra) 
1 
1 
2 cos( kt) 
2 cos( kt) 
4cos(2mra)  cos(kt) 
2 cos( kt) 
2 cos( kf)  
2(-1)' 
2(-1)l 

2( -1 ) f+ r  

4(-1)' cos(2mra) 

1 
I 

2 c o s [ m ( 2 r + l ) a ]  
-1 
-1 

2 c o s [ k ( r + ~ ) ]  
2 cos[k( t+i)]  
4 c o s [ m ( 2 r +  1 ) a ]  cos[k( t+f ) ]  

-2 COS[ k( t +f)] 
-2  COS[^( t +$)I 

0 
0 
0 
0 

1 i l  
-1 *1 

0 i 2  
1 *1 

-1 i l  
2 0 

-2 0 
0 0 
2 0 

-2 0 
2 0 

-2 0 
0 0 
0 0 

t Only for 9 = 2,4 , .  . . . 
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